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Chapter 1 
INTRODUCTION 

Improvements and advances in the development of computer 

architecture, both hardware and software structures, now provide 

innovative technology for the recasting of traditional sequential 

solutions into high-performance, low-cost, parallel systems to increase 

system performance. New processes and methodologies influence the 

implementation of real-time systems like guidance, control, avionics, 

robotics, and so on. The increasing demand of faster, real-time 

computation speed can be met with parallel path approaches at the 

algorithmic, as well as, hardware levels. 

This report is the result of research conducted in development of 

specialized computer architecture for the algorithmic execution of a 

avionics system, guidance and control problem in real time. The 

objective of this research is to enhance vehicle guidance resulting 

from optimal guidance strategies by incorporating high-speed parallel 

processing. This report presents a comprehensive treatment of both the 

hardware and software structures of a customized computer which performs 

real-time computation of guidance commands with updated estimates of 

target motion and time-to-go. 

Optimal control strategies are available for use in many guidance 

problems. In this research, the performance index for optimal guidance 

is chosen as a quadratic function of terminal miss and control action 

costs. A set of coupled, first order differential equations are solved 

to compute the optimal commanded acceleration of the advanced space 

vehicle. 
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To exploit a high degree of concurrency, the sequential algorithm is 

restructured. A parallel, multi-step, predictor corrector numerical 

integration technique is employed to solve the set of differential 

equations. A subsequent effort is devoted to segmenting or decomposing 

the algorithm into parallel and concurrent processes. Evaluation of 

derivatives and the integration of state variables are partitioned as 

distinct tasks. A task graph is constructed by considering the sequence 

in which the tasks are to be executed, satisfying all the precedence 

constraints. 

An important aspect of this research is the development of an 

optimum, real-time allocation algorithm which maps the algorithmic tasks 

onto the processing elements. 

path analysis, a widely used technique in graph theory and operations 

research. For the particular task graph considered, an optimal alloca- 

This allocation is based on the critical 

tion has been obtained with 29 processing elements. This enables the 

execution of the graph in the minimum possible time, as dictated by the 

precedence constraints of the graph and availability of resources. 

The final stage is the design and development of the hardware 

structures suitable for the efficient execution of the allocated task 

graph. The system is data-driven, i.e., when the necessary operands for 

a task arrive at a particular processing element, the task is immedi- 

ately executed. The basic system architecture consists of two star- 

shaped clusters , each consisting of 64 processing elements. A high- 

speed, buffered, crossbar, delta network allows parallel communication 

between pairs of processing elements within a cluster. 

2 



The processing element is designed for rapid execution of the 

allocated tasks. It contains local storage for both instructions and 

operands and extensive fault tolerance capabilities. Fault tolerance is 

a key feature of the overall architecture. 

The remaining chapters of this report: consider the various aspects 

In the second chapter, the guidance 

Chapter 3 

of the research in complete detail. 

problem is completely examined and mathematically defined. 

deals with the restructuring of the sequential algorithm. 

numerical integration techniques, task definitions, and allocation 

algorithms are discussed in the third chapter. 

parallel implementation is analytically verified and the experimental 

results are presented. 

driven computer architecture, customized for the execution of the 

particular algorithm. Some conclusions and recommendations are made in 

the last chapter. 

Parallel 

In Chapter 4 the 

Chapter 5 discusses the design of the data- 
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Chapter 2 
THE GUIDANCE AND CONTROL PROBLEM 

2.1 BACKGROUND AND OBJECTIVE 

The objective of this research is to investigate the enhancement of 

vehicle guidance resulting from the incorporation of optimal guidance 

strategies made possible by high speed parallel processing in guidance 

computation. The critical objective of this study is the determination 

of realistic cycle periods for repetitive, real-time computation of 

guidance commands with updated estimates of target motion and time- 

to-go. 

For some time maneuvering vehicles have employed some form of 

proportional guidance, which is optimal, or near optimal in many 

engagements. In other conditions, its performance may be acceptable but 

less than perfect. Due mainly to recent advancements in microprocessor 

technology, more sophisticated techniques of advanced estimation and 

control theory may be implemented in a relatively small and inexpensive 

avionics package. 

A number of studies have been directed toward the application of 

optimal control theory and estimation to a related guidance area [l-lo]. 

Simulation results have indicated improved performance subject to the 

suitability of the performance criteria, the critical estimates of 

time-to-go and target acceleration, and the sensitivity of the guidance 

law to the assumed missile dynamics. 

In at least one case, optimal grLdance strategies were used in a 

highly accurate, nonlinear, six degree-of-freedom simulation of a 

tactical missile [ 5 - 8 1 .  Guidance gains were computed as a function of 

time-to-go and constant target acceleration for a second-order, linear 
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model system and used in the nonlinear simulation with various estimate 

procedures for time-to-go and target acceleration. 

promising, but it was difficult to accurately assess the contribution of 

model error, estimation error, or nonjudicious performance indices to 

the miss distance. 

The results were 

With the prospect of extremely rapid computation of optimal guidance 

algorithms with specially designed computer architectures and parallel 

processing, as well as improved estimates of target acceleration, there 

is the prospect of solving the equations for guidance gains repetitively 

during the course of the intercept using more accurate dynamic models 

with adjustable parameter values and fresh estimates of target motion. 

2.2 DEVELOPMENT 

This section examines minimum control cost, minimum terminal miss 

guidance for the intercept of a moving target by a vehicle with inherent 

airframe and control system dynamic properties. Particular attention is 

given to the idealized problem of zero terminal miss, wherein the 

control gains are given in terms of the state transition of the 

uncoupled airframe dynamics. This approach separates the kinematic 

portion of the intercept dynamics, which is common for all intercept 

problems, from the kinetic portion of the vehicle dynamics. The 

particular problem structure makes the results applicable to a variety 

of engagement problems in which the vehicle airframe can be represented 

by a linear model. 

The resulting control law has a term related to the intercept 

kinematics, which is recognizable as the familiar generalized 

proportional navigation term. A second term in the control law is a 
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linear function of the vehicle airframe state and represents the 

guidance compensation due to finite airframe dynamics. The final term 

in the guidance law is related to target motion, providing an effective 

control in cases where target motion can be measured or predicted 

accurately. 

The formulation structures the guidance problem for separation of 

the intercept kinematics from the dynamics of the vehicle. The motion 

of the target is accepted as an uncontrollable input to the problem; 

however, the kinetic state equation can be augmented with a target model 

if available. 

2.2.1 Kinematics 

Let the vector position and velocity of the target (T) and 

controlled vehicle (I) be represented in an inertial frame by y and v, 

as illustrated in Figure 1. 

YT vT 

vT aT 

Defining the relative position and velocity of the target with 

respect to the missile yields 

Y'V 

v 9 aT - a1 
Letting the vector x represent the kinematic state of the intercept, 

then 
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x - Ax + B(a1 - aT) 
where 

In ( 3 )  the identity and null submatrices reflect the dimensionality of 

the problem. 

2 . 2 . 2  Kinetics 

The airframe/control response state is designated as z and satisfies 

the linear equation 

z - DX + Ez + Fu ( 4 )  

subject to the airframe control u (thrust, control surface deflection, 

etc.). The dimensions and components of the coefficient matrices in ( 4 )  

are vehicle-dependent and provide the generality in the problem. 

The intercept kinematics are coupled to the airframe dynamics by 

a1 - Gz + Hu (5) 

Thus any linearized airframe describable by (4) and (5) is subject to 

the analysis. 

I 
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Fig 2.1 Inertial Frame of an interceptor d a target 
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2 . 2 . 3  Optimal Guidance 

The conventional guidance performance index for targeting vehicles 

is of the form 

J - O.s~(tf)~Sfx(tf) + (0.5uTRu + r)dt, 

t0 

where Sf, R, and I' weigh the costs associated with terminal miss, 

control cost and time, respectively. In those cases where the terminal 

miss is the significant cost, it is logical to constrain the final 

position y(tf) to zero and to develop the corresponding control law 

under this condition. Equation (6) may be replaced by 

and 

where 

(0.5uTRu + r)dt 

t0 

Tx(tf) - 0 

T - [ I  0 1  

The equations (3-7) are collectec 

Ninimum Miss 

x 0 Ax + BGz + BHu - BaT 

z - DX + Ez + Fu 

J - O.s~(tf)~Sfx(tf) + ( 0 . 5 ~ ~  RU + r)dt j. t0 

below. 
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Zero Misg 

x - AX + BGz + BHU - BaT 
z - DX + EZ + Fu 

J - r(O.SuTRu + r)dt 

t0 

2.3 M1pIMUH MISS 

If the performance index in (8) is augmented in the usual manner, 

the Hamiltonian for fixed terminal time is 

H - 0 . 5 ~ ~  Ru + XT[Ax+BGz+BHu-Ba~] + pT[Dx+Ez+Fu] (10) 

The resulting boundary value problem is 

z - Dx + EZ + Fu 

The computation of the control gains is achieved via the inverse 

formulation 

10 



The nonsingular diagonal matrix Sf* is used for the computation of 

the inverse problem and its elements are set to zero in the solution for 

the gains. 

The resulting control vector u is 

u - Kyx + K ~ z  + K3 
where 

K~ - -R-~(HTBTP~ + FTP~T) 
I Kp 0 -R-'(HTBTP2 + FTP5) 

K3 -R-l(HTBTPj + FTP6) 
and 

11 



The particular case of interest is that in which the kinetics of the 

vehicle are independent of the intercept position and velocity, i.e., 

D - 0  

In this case, the equations (11) are integrable and yield 

Q3 
J 
t 

where 

*A9[ 0 I 
tI 

I 

and 

The elements of Sf* are set to zero in the resulting expressions for the 

elements of Q. 
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The minimum terminal miss control law is determined by (13) -(15). 

The case where the terminal miss weighting is large may be solved by 

constraining the terminal position, as is done in the next section. 

2 . 4  ZERO TERHI14AL MISS 

The zero terminal miss and minimum control cost formulated in an 

earlier section and outlined in (9) is solved here. 

also treated in Reference 4. 

fixed-time problem is 

This problem is 

The augmented performance index for the 

f - vTTx(tf) + [0.5uTRu + XT(Ax+BGz+BHu-BaT) + pT(Dx+Ez+Fu)]dt i' 
t 

yields the boundary value problem described by 

X - -ATX - DTp X(tf) - TTv 

13 



Selecting 

x - SIX + s2z + S3Y + s4 

where 

A2 - A - BHR'l(HTBTS1 + FTSs) 
B2 - BG - BHR"(HTBTS2 + FTs6) 

C2 - -BHR"(HTBTS3 + FTS7) 

D2 D - FR'l(HTBTS1 + FTS5) 
E2 - E - FR'l(HTBTS2 + FTS6) 
F2 - -FR-l(HTBTS3 + FTS7) 
G2 - -B€IR'I(HTBTS4 + FTSa) - BaT 
Hp -FR'l(HTBTS4 + FTs8) 

Inspection of (17) and (18) shows that all unknown matrices except 

S3 and S7 are null. Leaving 

S3 + ATS3 + DTS7 - 0 
S7 + ETS7 + GTBTS3 - 0 

S3(tf) - TT 
S7(tf) - 0 (19) 

u - -R-l(HTBTS3 + FTS7)v 

14 



The invariance of the terminal manifold 

implies 

Sg + SgA + SlOD - 0 

where 

Therefore the control law for zero miss is 

u K1X + K ~ z  + K3 

where the navigation, vehicle airframe, and target position components 

of the position and velocity control are evident. 

For the uncoupled case where D is null, the equations (19) and (20) 

are integrated for computation of the optimal gains. Integration yields 

Si0 - S7T = Sg(r)BG@E*(t-r) dr 

t 
J 

15 



tc 

t 

t c  

t 

where 

The 

written 

where 

Also 

@E* = -@E*E 9*(0) - I 
target motion term of the control for the uncoupled case can be 

t f r 
K3 KO J ( t f  - 7 )  aT(7) dr 

t 

KO - R-l(HTBTS3 + FTS7)S11-1 

where VT(t) represents present target velocity and VA(t) is the average 

relative velocity on the terminal interval (t, tf). 

effective estimation of target motion is recognized. 

The need for 

2.5 IMPLEMENTATION 

To develop an implementation of a real-time optimal guidance and 

control processor which is usable in an adaptive mode by continuously 

16 



I 
I 

updating the coefficients, a second order, variable parameter vehicle 

model was chosen. 

problem, but is highly representative of an actual system. 

the control computation for the other plane is inherently a totally 

parallel process. 

optimal strategy was chosen. 

This model represents only a single dimension of the 

Furthermore, 

A minimum terminal-miss, minimum control-action 

To implement the algorithm in a realistic planer problem the 

following scalar dynamic equations are chosen: 

- 

0 

@n 2 

- 

Y - v  

v - aT - a1 
with the airframe model responding in accordance with 

.. 
a1 + 2conaI + wn 2 a1 - on2ac 

where aC is the commanded acceleration specified by optimal guidance. 

The performance index for optimization is chosen as 

‘r 
J - 0.5sy2(tf) + 0.5r ac2(t) dt J 

t0 

where s and r are scalar performance parameters weighing terminal miss 

and control action costs. 

System parameter matrices corresponding to equation ( 8 )  are 

A -  [ 1 :] 
D -  [ 1 :] E -  

B - [  -:] 
0 1 

-on2 -2wn 2 
F -  

17 



H -  0 

The optimal commanded acceleration is then given by: 

ac - - wn2/r[ s4y + S ~ V  + SgaI + SlOaI + ~14aT 1 

where the optimal gain coefficients satisfy 

SI - as42 - o 
S2 + Si - aS4S7 - 0 
S3 - S2 -BS4 - aS4Sg - 0 
S4 + S3 
~5 + 2 ~ 2  - as72 - o 
S6 + S3 - S5 - /3S7 - aS7Sg 
S7 + S4 + S6 - $39 - aS7S10 

- $34 - aS4S10 - 0 

- 2 ~ 6  - 2 ~ ~ 9  - as92 - o 

- 0  

- 0  

18 



These equations, processed from tf to 0, are the objective guidance 

equations for implementation of the real-time processor developed in the 

subsequent chapters. 
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Chapter 3 
PARALLEL IMPLEMENTATION 

In this chapter the restructuring of the sequential algorithm is 

discussed so that a real-time, efficient, and parallel implementation 

can be developed. 

experimental results are discussed in Chapter 4. The steps of the 

restructured algorithm are outlined in Section 3 . 1 .  

integration techniques are reviewed in Section 3.2. 

the concepts of a task graph. 

problem in general, and two allocation schemes in specific. 

The performance of the modified algorithm and the 

Parallel numerical 

Section 3 . 3  presents 

Section 3 . 4  deals with the allocation 

3.1 RESTRUCTURING 

To calculate the commanded acceleration of the vehicle in one 

direction 14 ordinary differential equations must be solved in real- 

time. Speed and accuracy are the salient requirements. The computer 

architecture suitable for this parallel algorithm is of no less impor- 

tance and this is the focus of Chapter 5 .  

implications are considered. 

Here only the algorithmic 

The key to parallel implementation is identifying as many operations 

as possible to be executed in parallel and removing dependencies 

wherever feasible. 

which are simultaneously executable. These asynchronously cooperating 

tasks will be executed on different processors if available. 

The overall problem is segmented into several tasks 

20 



The basic steps of the restructured algorithm are as follows : 

1.) Remove the sequential bottlenecks of numerical integration 
of ordinary differential equations. 
decades several authors have come up with efficient and 
parallel numerical integration techniques. 

In the past three 

2.) Segment the evaluation of derivatives and the integration of 
state variables into several distinct tasks. 

3.) Construct a maximally parallel task system considering all 
the precedence constraints. 

4.) Develop an efficient allocation algorithm to schedule the 
tasks to different processing elements in a multiprocessor 
environment. 

3.2 PARALLEL W I C A L  INTEGRATION TECHNIQUES 

There has been some effort over the years to speed up the numerical 

integration of an ordinary differential equation (ODE). The old 

sequential techniques have been modified so that they are suitable in an 

environment with a plurality of processors. In this section some of 

these parallel numerical integration techniques are reviewed. 

The parallel methods compute the solution of a set of n O.D.E.’s 

developed by 

Most methods generate yn, an approximation to y(b) on a mesh 

a - to<tl<t2< ... <% - b. These are called step-by-step difference 

methods. 

earlier values yn, y+l,. . . ,yn-r+1. 
finite differences is a sequential calculation. Lately, the question of 

An r-step difference method is one which computes yn+l using r 

This numerical integration by 

using these formulas simultaneously on a set of arithmetic processors to 

increase the speed has been addressed by many authors. 

21 



3.2.1 Runge-Kutta (RK) Methods 

The general form of an r-step RK method, the integration step 

leading from Yn to Yn+l consists of computing 

with appropriate values of a 's ,  b ' s ,  and R's. 

method is 

A classical 4-step RK 

Miranker and Liniger [ll] developed parallel Runga-Kutta formulas. In 

the parallel computation of a third-order approximation y13, first-and 

second-order approximations, yo 1 and yo2, respectively in addition to 

yo3 must be computed. 

gives a second-order parallel scheme as a by-product. 

As a consequence, the third-order parallel method 

The formulas of 

the parallel schemes have the structures: 

first order: 
RK1 

22 



second order: 
RK2 

third order: 
RK3 

Ki2 - Ky - h f(h, Ynl) 
K2 - h f(h + ah, Ynl + bKi2) 

Yn2+1 - Ri2 Ki2 + Rz2 K2 

~~3 - K~ 
K3 - h f(h + ah , Yn2 + bKi3 + c K ~ ~ )  

Yn3+1 - Ri3 Ki3 + R23 K23 + R33 K3 

The parallel character of the above formulas insures that RKi is 

independent of RKj if and only if i<j, i,j-1,2,3. This means that if 

RK1 runs one step ahead of RK2, and RK2 runs one step ahead of RK3, then 

they can be executed simultaneously. 

R's, the parallel third order RK formula is given by: 

Using Kopal's [12] values of the 

e hf( b 2  9 y1n+2) 

y1n+3 y1n+2 + ~l,+2 

K2n+1 hf(h+l + A, Y1n+l + dln+l) 

Y2n+2 

K3n - hf(t, + alh, Y2n + (a1-(l/6a))Kln +(1/6a)K2n) 

Y2,+1 + (1-(1/2a)>K1n+1 + (1/2a)K2n+l 

Y3,+1 Y3n + ((2a1-1)/2a)(Kln - K2n) + K3n. 

where a - 2(1-3ala1)/(3(1-2al)). 
The above 3rd order RK formulas require 3 processors to compute the 

three functions in parallel. The main drawback of this scheme is that 

it is weakly stable and leads to an error that grows linearly with n. 

23 



3.2.2 Interpolation Method 

Nievergelt [13] proposed a parallel form of a serial integration 

method in which the algorithm is divided into several subtasks which are 

computed independently. 

[a,b] into N equal subintervals [ti-l, ti], to-a, trb, i-1,2,3, ..., N, 
to make a rough prediction yio of the solution y(ti), to select a 

certain number Mi of values yij, j-1,. .. ,Mi in the vicinity of yio and 
finally to integrate the system with an accurate integration method M. 

The idea is to divide the integration interval 

equal length, (b-a)/N. 

interpolating the previous solution segment over the next interval to 

The connection between these branches is made by 

the right. The time of this computation can be represented by 

Tpl - time for serial integrationm + time to predict yio + 
interpolation time + bookkeeping time. 

Interpolation can be done in parallel. If it is assumed that the 

time consuming part is the evaluation of f(t,y) and the other contribu- 

tions to the total computation time are negligible, the speed up is 1/N. 

But to compare this method with serial integration from a to b using 

method M, the error introduced by method M is significant. This error 

depends on the problem, not on the method. For linear problems the 

error is bounded, but for nonlinear problems it may not be. 

usefulness of this method is restricted to a specific class of problems, 

and depends on the choice of parameters like yio, Mi and method M. 

Thus, the 

24 



3.2.3 Predictor Corrector (PC) Methods 

One step methods do not make full use of the available information. 

It seems plausible that more accuracy can be obtained if the value of 

ywl is made to depend not only on yn but also, on yn-1,. . . , and fn-1, 
fn-2, ... . 
For high accuracy they usually require less computation than one-step 

methods. 

For this reason,multi-step methods have become very popular. 

A standard fourth-order serial predictor corrector given by 

Adams-Moulton is: 

Ypi+1 = 

yCi+1 P i  + (h/24)(9fPi+l + 19fCi-l - 5fci-2 + fci-3) 

+ (h/24)(55 fc i  - 59fCi-l + 37fci,2 - 9fci-3) 

The following computation scheme, PECE, of the PC step to 
calculate yi+l is: 

1. 

2. 

3. 

4. 

5 .  

Let 

T f 

Use the predictor equation to calculate and initial approxi- 
mation to yi+l. 

Evaluate the derivative function fPi+l. 

Use the corrector equation to calculate a better approxima- 
tion to yi+l. 

Evaluate the derivative function fci+l. 

Check the termination rule. If it is not time to stop, 
increment i, set yi+l - yci+l and return to step 1. 
- total time taken by function evaluation done for one 

step 
T p c ~  - time taken to compute predictor (corrector) value for a 

single equation 

then time taken by one step in serial predictor corrector is 

T - 2(nTpc~ + Tf) 

The serial method is schematized in Fig. 3.1 
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n-3 n-2 n-1 n p+1 

Fig. 3.1 Serial Predictor Corrector method 

The upper line represents the progress of the computation at the 

mesh points for ynp and fnp, and the lower for ync and fnc. 

vertical line is the computation front. The calculations ahead of the 

The broken 

front depend on information on both sides. This a characteristic of 

sequential calculation. 

Miranker and Liniger developed formulas for the PC method in which 

the corrector does not depend serially upon the predictor, so that the 

predictor and corrector calculations can be performed simultaneously. 

The parallel predictor corrector (PPC) also operates in a PECE mode, and 

the calculation advances s steps at a time. There are 2s processors and 

each processor performs either a predictor or a corrector calculation. 

A fourth order PPC is given by: 

yi+1P - Yi-1' + (h/3)(8fiP - 5fi-1~ + 4fi-zc - fi-3c) 
yic - y1-1' + (h/24)(9fiP.+ 18fi-1~ - 5fi-2c + fi-3c) 

The method is schematized in Fig. 3.2. 
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Fig. 3.2 Parallel predictor Corrector rsthod 

The computations at points ahead of the front depend only on 

information behind the front, a characteristic of parallel 

computation. The sequence of computation is divided and each of its two 

parts 

ynp+l, fn-lC, . . . . . . . . and ync,fnc .. . . ... . 
may be simultaneously executed on separate processors. 

As shown in [14], the parallel time for a single step of the 

fourth order PPC method is given by: 

T - nTpCE + tf + 3nT~c + 2Ts 
where 

T ~ C E  = Tf as defined before and 
TDC 
Ts 

- time taken for data communication - time taken for synchronization 
For 4 processors (s-2) the parallel PPC formulas are: 
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Generally higher accuracy and fewer function evaluations of PC 

method5,as compared to RK methods, are obtained at the cost of increased 

complexity and possible numerical instability. 

do not inherit the stability of their serial counterparts. 

hand, PPC methods are as stable as their serial formulas. This is 

proven by Katz, et al., [IS]. 

The parallel RK methods 

On the other 

3.3 GENERATION OF THE TASK G W H  

A task is defined as a unit of computational activity specified in 

terms of the input variables that it requires, the output variables that 

it generates, and its execution time. The specific transformation that 

it imposes on the inputs to produce the output is not a part of the 

specification of the task. 

prated. 

Thus, the task may be considered uninter- 

Let J =(TI, Tp, ..., Tn) be a set of tasks and <. an 

irreflexive partial order or procedure relation defined on J. 

C-(J, <.) is called a task system. The precedence relation means that, 

if T<.T/, then T must complete execution before TI is started. 

Then 

From this definition a graphical representation, called a task 

graph, is obtained for a task system. 

whose vertices, or nodes, are the tasks J and which has an edge from T 

to TI, if T<.T/ and there is no TI/ such that T<.T//<.T/. 

of edges in the task graph represents the smallest relation whose 

transitive closure is <. . 

This consists of a directed graph 

Thus, the set 

With each task T two events are associated, initiation and 

termination. 

any string 5 - a1, 42, ..., azn of task events satisfying the precedence 
An execution sequence of an n-task system C - (J,<.) is 



relation (i.e., if T<.T/, the termination event of T must occur 

prior to the initiation event of TI) and consisting of exactly one 

initiation event and one termination event for each task. 

that represents a sequential program has only one execution sequence; 

however, for other task systems there may be several. 

A task system 

To discuss determinant task systems, let the physical system on 

which task systems execute be represented by an ordered set of memory 

cells M = (MI, M2, ...,%). With each task in a system C two, possibly 

overlapping, ordered subsets of M are associated,the domain DT and the 

range RT. 

cells, and when it terminates, it writes values in its range cells. 

Given an execution system w for a task system, the value sequence 

V(Mi,6) is defined as the sequence of values written by terminating 

tasks in 6 for which Mi E RT. 

When T is initiated, it reads the values stored in its domain 

The intuitive concept of determinant task systems is more rigorously 

defined as follows : 

A task system C is determinant, if for any given initial state PO, 

V(Mi,L)- V(Mi,d), i E [l,m] for all execution sequences 6 and 6 1 .  

From this definition, it is clear that a task system representing a 

sequential program is determinant since there is only one execution 

sequence. 

to be equivalent if they are determinant and produce the same value 

sequences for the same initial state. 

determinant task system repr2sented by the sequential algorithm into an 

equivalent determinant task systeqwhich has more parallelism. 

Two task systems both consisting of the same tasks are said 

The goal is to convert the 
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Given a task system C, tasks T and TI are noninterfering if T<.T/ or 

Task systems consisting of mutually noninterfering tasks are TI<. T. 

determinant [16]. With the above background in mind the task graph is 

generated. The exact details of this are given in Chapter 4. 

3 . 4  ALLOCATION 

Given a determinant task system in the form of a task graph and the 

execution time of each task, the next step is the assignment of the 

tasks to p processors. This is termed the allocation phase which is a 

part of the preprocessing stage. 

The following parameters are available for allocation : 

1) a set of tasks J = (Tl,T2, ..., Tn), 
2) an irreflexive partial order <. on J, 

3) a weighting function W from S to be positive integers, repre- 
senting the execution time of each of the tasks, and 

4) the number of processors p. 

As many as p tasks can be executed in parallel at any time. If task 

T is first executed at time t using processor K, then it is executed 

only at tines t, t+l, ..., t+W(T)-1 using processor K each time. This is 

an example of non-preemptive allocation, where once a task is assigned 

to a processor it must be completed before any other task is assigned to 

the same processor. An additional requirement is that any task TI, such 

that T/<.T, complete execution at time t/ where t/lt. 

A schedule is an assignment of tasks to processors that satisfies 

the above conditions and has length tmax, where tmax is the m a x i m  time 

at which the termination events occur for all tasks. The allocation 

problem is the determination of an assignment that minimizes tmax with a 
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minimum number of parallel processors. 

studied extensively by a number of pioneering researchers [17). 

been shown to be NP-complete [18] and can be considered intractable. 

When the number of processors, the task processing times and the 

precedence constraints are all arbitrary, the complexity of such an 

allocation problem becomes NP-hard in the strong sense. 

equals NP, it is impossible to construct either a pseudopolynomial time 

allocation algorithm or a fully polynomial time approximation scheme 

This type of problem has been 

It has 

Hence, unless P 

~ 9 1 .  

In order to circumvent these difficulties, heuristic algorithms have 

been considered to be the most powerful tools. Indeed, the critical 

path (CP) method [22] and HLFET (highest levels first with estimated 

times) [20], which essentially is a sort of list scheduling method, are 

proposed. 

Two different allocation schemes are discussed in this chapter. The 

first, proposed by Kasahara and Narita [21], is known as the CP/MISF 

(critical path/most immediate successors first) method, is an improved 

version of the CP-method. 

on the application of the branch and bound technique, is termed BBAS 

(branch and bound allocation scheme). 

The second, a newly proposed algorithm based 

3.4.1 The CP/MISF Method 

A critical path is defined as the path from the exit node to the 

entry node having the longest path length In mathematical terms 

tcr - max It% 
k i- 

where % represents the kth path from the exit node t o  the entry node. 
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tcr is equal to the minimum possible execution time for a plurality of 

parallel processors to process the tasks involved in a given task graph. 

The level li, defined for each task, serves as the basis for 

constructing the priority list. The level li of task i is defined to be 

the longest path length from the exit node to task i, or 

where nk stands for the kth path from the exit node to Ni. 

The CP method is essentially the generalization of Hu's algorithm 

[22 ] .  Since the priority order cannot be uniquely determined when there 

exists more than one task having the same level, the worst schedule may 

result depending upon the task chosen. In this method when two tasks 

have the same level, the task having the largest number of immediately 

successive tasks is assigned the higher priority. 

The CP/MISF method consists of the following steps: 

Step 1: Determine the level li for each task. 

Stap 2: Construct a priority list in the descending order of li 
and the number of immediately successive tasks. 

Step 3: Renumber the tasks from 1 to n in the descending order 
of priority. 

Step 4: Execute list scheduling on the basis of the priority 
list. 

The problem of determining the level of each task involves the 

calculation of the longest path from the exit node to each node. In the 

case of a single exit node, a dummy exit node is added. Since all arcs 

are directed from the entry node toward the exit node, the longest path 

is measured in the direction opposite to the orientation of each arc. 

This problem can be solved in O(n2) by solving the Bellman's equations 
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L e t  
a i j  - 0 if  l ink  ( j , i )  ex is t s  - -- otherwise 

ti 

li 

- time for  executing task i 

- level  of task i 

Then fo r  n tasks,  

1n - t n  

For each node j ,  j not equal t o  n ,  there must be some arc ( k , j )  i n  a 

longest path from n t o  j .  

that 1j - lk + akj + tj .  This follows from the fact tha t  the pa r t  of 

the path which extends t o  node k must be the longest path from n t o  k ,  

i f  t h i s  were not so, the overall  path t o  j would not be as long as 

possible. 

Whatever the ident i ty  of k, it is cer ta in  

(This is the "Principle of Optimality"). But there a re  only 

f i n i t e  choices of k, i . e ,  k -n, n-1, . . . , j +  1, j - 1 ,  ... 2,l. Clearly k must 

be a node f o r  which 1j is as large as possible. 

the most immediate successive tasks can be incorporated i n  the same step 

by modifying 1j 

In  fact the e f f ec t  of 

j'n 1j - 1 + imsucc 3 

where imsuccj is the number of  immediate successive tasks f o r  task j and 

n is the t o t a l  number of tasks. 

A c t u a l  experimental resu l t s  with respect t o  the specif ic  problem are 

discussed l a t e r .  It  has been shown [21] tha t  optimal solutions w e r e  

obtained for  about 67 percent of some 200 cases tes ted by the CP/MISF 

method. 

obtained fo r  87 percent of  the cases and those less  than 10 percent for 

Approximate solutions with error  l e s s  than 5 percent were 

98.5 percent of the cases. 

33 



3.4.2 The BBAS 

Branch and bound implicit enumeration algorithms have emerged as the 

principal method for finding optimum solutions to discrete optimization 

problems. Kohler’s [24] general representation can be used for the 

classification of the branch and bound technique. 

BB(Bp,S,E,L,U,RB) each parameter has the following significance: 

In the expression 

Bp : branching rule 
S : selection rule of next branching node 
E : elimination rule 
L : lower bound function 
U : upper bound cost 
RB : resource bounds 

The proposed algorithm works by partitioning the set of schedules 

into smaller and smaller subsets, finding lower bounds on total execu- 

tion times of each of the subsets, and using these bounds to guide 

further partitioning until a single schedule is obtained whose total 

execution time is less than or equal to the lower bounds of all the 

other subsets. 

Branching Rule, Bp : 

An allocation instant is defined as the time when one or more processors 

have just finished execution of the allocated task(s) and succeeding 

task(s) becomes executable. Since the task times are different, there is 

the possibility that the optimal schedule may not be obtained by simple 

list scheduling methods. A t  each stage of branching procedure, nodes 

should be generated to include the cases where a processor or processors 

become idle. 

processors are introduced, as done in [21]. These idle tasks, together 

with ready tasks are allocated. 

To this end fictitious tasks which correspond to idle 
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Nidle 0 Mav-I for Ma, M 
0 Mav for 14favcM. 

where Nidle is the number of idle tasks, Nready is the number of ready 

tasks, Mav is the number of available processors, and M is the total 

number of processors. 

Then the number of nodes generated from each branching node is given 

by 

%ranch Nalloc 

where C is the number of combinations and 

Nalloc I) Nready + Nidle. 

The set of allocatable tasks is represented by A. 

Selection Rule, S : 

The selection rule is used to choose the next branching node from the 

set of currently active nodes. 

lower bound or LLB. 

and comparing the lower bounds for a l l  the active nodes at each branch- 

ing instant. 

The rule used in the algorithm is least 

The next branching node is chosen by calculating 

Lower bound, L : 

The lower bound, in our case, is simply the total execution time for the 

partial schedule represented by each node. 

Upper bound cost, U : 

Uhen the solution of the original problem is known a priori, its value 

can be used as U. Otherwise, set U equal to a. The value U Ls updated 

whenever a smaller solution U/ is obtained. The smaller the value of U 

at an early stage of the search process, the shorter is the search time, 
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and a reasonable value of U is evaluated with the help of a heuristic 

algorithm. 

Elimination Rule, E : 

To eliminate some of the active nodes the following rule is employed. 

Whenever the lower bound LB(ni)/U/, the node ni is eliminated. 

Resource Bound, EtB : 

This is the allowable computing time limit and storage capacity limit. 

At first glance the simplistic BBAS seems to have enormous time and 

space complexities, but the greatest advantage of this scheme is its 

inherent parallelism. The potential parallel paths in the control flow 

of this algorithm may be explicated and computed by multiple processes. 

In other words the loop is unfolded to let the multiple processes work 

on different iterations of the unfolded loop. 

rudimentary stage and will be further investigated later. 

authors are working on a possible parallel implementation of this new 

allocation scheme. 

This algorithm is in its 

Presently the 
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Chapter 4 
VERIFICATION & EXPERIMENTAL RESULTS 

The restructured parallel algorithm was verified to check its 

validity with respect to the actual problem in hand. 

were mainly performed to show the improved performance of the new 

parallel approach compared to the conventional sequential one. 

are shown corresponding to one iteration of the integration of all the 

14 differential equations, listed in Chapter 2. 

the construction of the task graph. 

algorithm is discussed in Section 4.2. 

analyzed in Section 4.3. 

The experiments 

Results 

Section 4.1 deals with 

The implementation of the allocation 

The experimental results are 

4 . 1  COIPSTRUGTION OF TASK GRAPH 

The fourth order, 2-processor parallel predictor corrector method, 

outlined in Chapter 3, is chosen for solving the differential equations. 

The basis of constructing the task graph lies in the definition of tasks 

and their appropriate precedence constraints. Basically there awe two 

types of operations, updating the dependent variables and calculating 

the functions. Each update of a dependent variable is defined to be a 

task. Hence, for the fourteen differential equations involving PI, 

P2,. ..P14 there are twenty-eight different tasks as follows, (Pi)p and 

(Pi)= for i - 1...14. 
corresponding tasks are (Pi)j+lp and (Pi>jc for i - 1...14. 

Note that for a particular iteration level j, the 

Due to the highly coupled nature of the differential equations, 

there are dependencies between the various functions. It is noted that 

decoupling methods can improve the situation. 

evaluated from the updated dependent variables with each function 

The function values are 
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evaluation task fragmented into smaller subtasks. 

are defined in a manner such that each of them have some uniform 

execution time. 

and parallelism is optimally exploited. 

These smaller tasks 

In this way the task graph becomes more or less balanced 

Some sub-expressions, which are used a number of times, are 

identified. 

task to prevent repetitive calculations. 

required to calculate some constants. 

Each of these sub-expressions are defined as a separate 

There are some other tasks 

A l l  the tasks are listed in APPENDIX A. Each task is associated with 

task number, task time, predecessor tasks and successor tasks. Initially 

the tasks are numbered randomly. 

allocation algorithm, according to their respective priorities. Task 

times are calculated with the assumption that multiplication and 

addition take 30 and 20 time units respectively. 

explicitly stated because they are dependent on the hardware used, and 

hardware is the subject of later research. 

sor tasks for any task are defined in terms of the inputs consumed by 

that task and the tasks receiving its output. 

Later the tasks are renumbered, by the 

The time units are not 

The predecessor and succes- 

4 . 2  ILLLOCATION PROCESS 

This is perhaps the most important phase in the parallel method. 

The CP/MISF algorithm, outlined in Chapter 3, was fully implemented in 

PASCAL. The program is listed in APPENDIX B. The a'llocation process 

translates the task graph into an execution schedule. 

schedule is the sequence at which the tasks are executed by the various 

processors. 

The execution 
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The allocation program takes the task graph as its input. The input 

is provided in the form of task number, task time and links of the task 

graph. 

advantage of the structured nature of PASCAL. The 'initialize' proce- 

dure reads the input data from an external file and generates an 

adjacency matrix A such that 

The program is modularized into various procedures taking 

A[i,j] - 1 if there is a link from task i to task j - 0 otherwise. 
The 'level' procedure calculates the level of each task in the manner 

described in section 3.4.1. A matrix B is constructed such that 

B[i,J] - 0 if there is a link from task j to task 1 - -Q otherwise. 

The 'renumber' procedure generates the new numbers of all the tasks in 

the descending order of the priorities. 

correspondingly modified. 

The adjacency matrix is 

Then the 'main' program does the actual allocation job. Before 

allocating a task to a processor, it checks whether the predecessors 

have finished execution and whether the processor is free. 

processors are chosen in the ascending order of the processor array, 

because uniform inter-processor communication time is assumed. 

case of nonuniform inter-processor communication, this part of the 

program can be modified so that a processor is chosen to minimize the 

connrmnication time. 

Note that 

In the 
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4.3  DISCUSSION OF THE RESULTS 

The following three parameters are computed: 

1) Total execution time. 

2 )  Algorithm execution factor (AEF) defined as the ratio of the 
serial and parallel times. 

3) Hardware utilization factor (HUF) defined as the ratio of the 
AEF and the number of processors. 

It is found that the critical path of the task graph takes 300 time 

units, meaning that with the given task graph the minimum total execu- 

tion time is 300 time units. 

execution time is 6500 units. 

decreases as the number of processors increases. 

obtained with 29 processors, and an optimum schedule is achieved. 

Beyond this point the increase in the number of processors has no effect 

on the execution time. 

As shown in Fig. 4.2  in the serial 

The total execution time progressively 

The critical time is 

Fig. 4.3  shows the variation of the AEF with the number of proces- 

sors. Note that the maximum AEF cannot exceed the total number of 

processors. The results show that AEF almost takes its maximum value in 

each case and is 21.67 when n - 29. 
Fig. 4 . 4  is a plot of the HUF and the number of processors. A HUF 

of 100% means that the processors are fully utilized. 

that the HUF decreases with an increase in the number of processors. 

With 29 processors a hardware utilization factor of over 72% is 

achieved. 

It is observed 

It is concluded that for the given task graph the optimum schedule 

At this point the speedup compared to is achieved with 29 processors. 

sequential execution reaches its maximum possible value of 21.67 and the 
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hardware utilization is as high as 72.10%. These results show the 

validity of the parallel approach and also justifies the use of such an 

approach. The restructured method is much superior to the sequential 

algorithm and promises a substantial improvement in system performance. 
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Chapter 5 
HARDWARE AND SOFTWARE ASPECTS 

I 

The design of a suitable multiprocessor computer, which optimally 

executes the various independent tasks, is discussed in this chapter. 

The parallelism analysis of the restructured algorithm assumes a 

multiprocessor environment with uniform interprocessor communication 

times and no hardware conflicts. As shown, the algorithm is optimally 

executed with 29 processors, providing the commanded acceleration in one 

direction. 

which is customized for the specific application. 

This chapter outlines the proposed computer architecture 

5.1 PITFALLS OF VON "Rl MITLTIPROCESSING 

Most 

model of 

benefits 

Iannucci 

style of 

existing multiprocessors are variations of the von Neumann 

computation and have so far failed to yield any substantial 

over single processor systems. 

[ 2 5 ] ,  there are several problems confronting the von Neumann 

multiprocessing. 

As discussed by Arrind and 

The first problem is that of memory latency, the time between 

issuing a memory request and getting a response. If the computer 

contains a significant number of processors, and each is fast enough 

that its cycle time is limited by the speed of light, then the physical 

size of the whole computer will make most of the memory a significant 

distance away from any one processor. 

are needed to access most of the memory, if it is to be shared. 

Competition by several processors for the same memory at the same tine 

makes the problem more severe. 

architects use only messages, prohibiting shared memory entirely and 

That is, several instruction times 

In trying to solve this problem, many 
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surrendering flexibility and responsiveness. Others allow shared memory, 

but make local copies of the data in caches. This solution exchanges the 

latency problem for the cache coherence problem, i.e., how to maintain 

consistency when one or more of the copies is written. 

A second problem is that of effective synchronization. Parallel 

processes must be able to wait for others without having to execute many 

extra instructions or waste time in other ways, and without signifi- 

cantly affecting the other processes that are running in parallel and 

not waiting. The use of traditional methods like interrupts, limits the 

synchronization rates to once every few hundred instructions. 

like test-and-set which wait busily and thereby can avoid exchanging 

processes are better, but these approaches usually waste instructions to 

accomplish waiting. 

Primitives 

A third problem is the avoidance of bottlenecks which inhibit the 

amount of parallelism that can be attained, thereby limiting the number 

of processors that is practical. Changing an architecture, especially 

the instruction set, to correct bottlenecks in parallelism is ineffi- 

cient because it destroys software compatibility. 

5.2 DATA-DRIVEN PRINCIPLES 

The solution of the control problem necessitates an efficient and 

fast way of handling the movement of large amounts of data among various 

processors. This makes the data-driven mode of computation an ideal 

candidate. Moreover, the problems associated with the von Neumann style 

of multiprocessing are avoided at the very basic level in the data- 

driven computer. 

Instruction execution in a conventional von Neumann computer is 

under the control of the program counter. Whereas, the data-driven model 
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of computation is based on the following two principles: 

1) Any computation can proceed as soon as its operands become 
available. 
can execute simultaneously. 

Potentially all operations that are thus enabled 

2) All operations are free of side-effects, so that two enabled 
operations can execute in either order, or concurrently, 
without error. 

If a program has a sufficient amount of parallelism, then a data- 

driven processor can be kept fully utilized. In the previous chapters 

it is shown that there is an enormous amount of parallelism inherent in 

the avionics application. As discussed later, an execution unit in the 

proposed data-driven processing element receives enabled instructions 

only, and waiting for operands is done in a separate section. A 

data-driven processor, unlike a processor with a program counter, 

executes a stream of enabled instructions in a highly pipelined manner 

and allows greater freedom in the order of execution of the enabled 

instructions. 

Data-driven architectures are usually classified as either static or 

dynamic. In a static architecture the nodes of a program graph are 

loaded into memory before computation begins, and, at most, one instance 

of a node at a time is enabled for firing. A dynamic architecture 

facilitates the simultaneous firing of several instances of a node, and 

these can be created at runtime. 

chapter is of the latter type. 

The architecture proposed in this 

The parallelism analyses, in the previous 

chapters, are based on a single iteration of the integration of the 

fourteen differential equations, but there are obvious concurrencies 

between the various iterations. 

unfolding the integration loop at runtime by creating multiple instances 

of the loop body and then executing these instances concurrently. 

This architecture has the provision of 
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5 . 3  DIFFERENT SOFTWARE AND HARDWARE STRUCTURES 

In this section the salient software and hardware aspects of the 

proposed data-driven computer are outlined. 

emphasized the software aspects which are accomplished in the prepro- 

cessing stage. 

hardware aspect. 

The previous chapters 

The actual machine to execute the tasks constitutes the 

5.3.1 Language Considerations 

The entire process of defining the algorithm, removing dependencies, 

constructing a task graph, and finally allocating the tasks to the 

various, processors must be completed before the actual execution starts. 

This process is deliberately kept language-independent to gain flexibil- 

ity. 

use a functional language than a conventional imperative language as the 

high-level language to represent the problem. 

between the high-level language required to represent the problem and 

the base language which is efficiently implemented by the architecture. 

The high-level language should satisfy the following properties: 

Since the architecture is data-driven, it is more advantageous to 

There is a difference 

Freedom from side-effects : This is necessary to ensure that 
data &pendencies are the same as the sequencing con- 
straints. 
cannot modify variables in the calling program. 
variable results in the creation of new variables. 

Global variables are not allowed and procedures 
Updating a 

Locality of effect : To avoid memory overflow variables 
should have a definite region of operation or scope. This 
also avoids the apparent dependencies that result from - 
duplication of labels. 

Equivalence of instruction scheduling constraints with data 
dependencies : This means that all the information needed to 
execute a program is contained in the task graph. 
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4) Single assignment : This means that each variable may appear 
on the left side of only one assignment statement in the 
part of the program in which it is active. 

There are three main categories of programming languages, func- 

tional, actor, and logic, that are suitable for data-driven computa- 

tions. Functional languages can either be single-assignment, like ID, 

VAL, VALID, and LUCID, or applicative, like pure LISP, SASL, and FP. 

Actor languages are programming systems composed of objects that 

interact only by sending and receiving messages. 

language. 

example. 

language for this architecture. 

SMALLTALK is an actor 

Logic languages are based on symbolic logic and PROLOG is an 

Any one of these languages can be chosen as a high-level 

The base language of this computer is the graphical representation 

termed the task graph, discussed in Chapter 3. 

executes the tasks shown in the task graph, satisfying the precedence 

constraints of the graph. 

inputs are available. 

The machine efficiently 

A task can be executed as soon as all its 

5.3.2 Taggad Tokens 

In a manner similar to Anrind [ 2 6 ]  and the Manchester Dataflow 

machine [27 ] ,  information is carried by tokens that flow along the arcs 

- of the task graph. A task is enabled when, and only when, all of its 

input tokens are present. An enabled task fires by absorbing its input 

tokens and producing output tokens that carry the result as their value. 

The order of execution is unimportant since there are no races. 
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5.3.3 The Overall Architecture 

The block diagram of the overall architecture is shown in Fig. 5.1. 

There are three basic stages, the preprocessing stage, the execution 

stage, and the output stage. 

host computer gathers the various input data and coordinates the overall 

activities. 

allocates the tasks to the various processors in an optimal fashion. 

Following the allocation phase, the data and instruction tokens are 

In the preprocessing stage a conventional 

A n  important part of this stage is the allocation unit which 

downloaded onto the individual memories of the processing elements 

(PES).  

In the heart of the architecture lies the data-driven execution 

stage or the PE array. 

connected in a star configuration. 

execution of the algorithm requires 29 PES. 60 'workhorse' PES are used 

for computation purposes only, and the remaining 4 PES in each cluster 

are dedicated for various purposes. 

tion link between the preprocessing stage and the cluster. 

dedicated PE is reserved for diagnostic purposes. 

processor helps in recovery from faults and in reassignment of PES. The 

third is reserved for inter-cluster communication, and the remaining one 

There are two clusters of 64 PES each, which are 

As noted in Chapter 4 ,  the optimum 

One dedicated PE is the communica- 

The second 

This diagnostic 

semes as a link between the cluster and the output stage. 

time, only 29 workhorse PES function within a cluster. 

in standby and are used when a PE must be aborted after a fault is 

detected. 

At any given 

The others remain 
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I 
For communication with 
the output stage 

EXECUTION STAGE 

Fig. 5.1 Block Diagram of the Overall Architecture 
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Two clusters are required because an identical number of calcula- 

tions must be performed to compute the acceleration of the vehicle in 

the transverse direction. The efficiency of the-architecture results 

from the fast movement of data through the execution stage, which is 

devoid of the conventional von Neumann bottlenecks. 

The output stage receives the final result tokens from the execution 

stage via the dedicated PES in each cluster. These tokens are converted 

into a form that serves as an input to the subsequent motion control 

actuators. 

5 . 3 . 4  Network Topology of the Execution Stage 

Among the possible configurations are the ring, tree, completely 

connected, and the star topologies. 

connected on a circular bus. 

to each processor, and failure of a single node or path within the ring 

may halt communication in the entire ring. To alleviate this problem, 

designers have constructed partially and completely connected rings at 

the expense of increased network complexity and cost. 

of nodes in a ring is limited because message delays increase linearly 

with the number of nodes, making a ring inefficient for heavy traffic. 

A tree network uses the minimal number of connections per processor. 

In the ring network N processors are 

Only 1/N of the bus bandwidth is available 

Also, the number 

Communication between remote leaves faces a bottleneck towards the top 

of the tree, and the data paths become longer as the number of nodes 

increases. Hence a tree is also unsuitable for heavy communication. The 

completely connected network requires N2 connection links for N 

processors, which is prohibitively expensive. 
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The star network has both logical and hardware simplicities. 

tasks are uniformly distributed, most messages traverse only two 

communication paths. A major vulnerability of this topology is the 

If the 

active hub which, not only introduces queuing delay, but also disables 

the entire network, once it fails. For this reason a passive hub, which 

is nothing but a physical connection of the various paths, is used. 

The result token from every PE is broadcast to all PES in the 

cluster. 

address, and all PES decode this field to find a match. 

The result token contains a field denoting the destination 

5.3.5 Crorabar Switching 

An alternative to broadcast communication is the use of crossbar 

switch networks. 

is broadcast to all the PES. 

the hub of the star for routing the information to the appropriate 

processor. 

parallel communication between pairs of processors. 

switches are available which make the switching time negligible compared 

to token formatting and communication times. 

Communication is inherently sequential if the message 

A high-speed crossbar switch can be used at 

The crossbar switch gives the cluster the capability of 

Extremely fast 

An n by m crossbar switch is a device with n inlets, m outlets, and 

an array of n+m contacts, sometimes called crosspointo, for connecting 

each inlet to each outlet. A crossbar network is an interconnection of 

crossbar switches in accordance with certain rules. The switches must be 

partitioned into a number of classes called stages in such a way that 

all switches in a given stage have the same number of inlets and 

outlets. 

the network. 

The inlets of the switches in the first stage are the inputs of 

The outlets of the switches in each stage except the last 
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are connected in an one-to-one fashion to the inlets of the switches in 

the following stage by links. 

last stage are the outputs of the network. 

Finally the outlets of the switches in the 

Delta networks are multiple-stage networks with each stage consist- 

ing of several crossbar switches, as shown in Fig. 5.2. The switches in 

a buffered delta network have buffers to temporarily store tokens which 

cannot be forwarded in the current cycle. 

network can be constructed from B by B crossbar switches, each capable 

of forwarding a token that arrives at any of its B inputs to any of its 

B outputs (see Fig. 5.2, where N-8 and B-2). The network has n/b stages 

(numbered 1,2, ..., n/b, where n-logpN and blogzB), and each stage has 
2(n-b) crossbar switches. 

An N by N buffered delta 

For each of its output ports, a switch selects one token from the 

set of tokens contending for that port and offers it to the next stage 

connected to that port. 

switch is determined by the switch from a destination address included 

in the token. 

heads of the switch buffers are considered. 

ports, one of the requesting tokens is selected equiprobably and offered 

to a switch in the next connected stage. The switches with input tokens 

forward them to the intended buffers, if these buffers have a vacancy at 

the beginning of the clock cycle. 

signal is sent to the switch from which the token came. 

The output port through which a token leaves the 

Generally, the output ports requested by the tokens at the 

For each of these output 

For each accepted token an acknowledge 

Three major factors v-iich influence the performance of a buffered 

delta network are the size of the switches, the size of the buffers used 

in each switch, and their position with respect to the switch. It is 

shown in (281 that for small buffer sizes, delta networks constructed 
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with 4 by 4 switches provide slightly better throughput and substan- 

tially lower delay than 2 by 2 switches. 

the delta networks constructed from 2 by 2 switches provide better 

throughput at the expense of larger delays. 

However, for large buffer sizes 

Tokens are blocked when there is either more than one token in the 

switch (switch blocking) or insufficient buffer capacity (buffer 

blocking). In networks with large buffer sizes, buffer blocking is 

minimized and the degradation of throughput is primarily due to switch 

blocking. 

switch, it is advantageous to use 2 by 2 switches instead of 4 by 4 

ones. The buffers can be provided at the input links of each switch, as 

shown in Fig. 5.3a, or they can be inside the switch as shown in Fig. 

5.3b. 

is advantageous to use buffers inside the switches, in terms of both 

Since switch blocking increases with the size of the crossbar 

Kumar and Jump [28]  have deduced that with large buffer sizes it 

throughput and delay. 

In a crossbar switch several tokens may simultaneously request the 

same output port, so various priority schemes can be used for selection. 

The simplest method is to select one of the tokens randomly. Another is 

the rotating priority scheme in which a l l  buffers in the switch are 

assigned a permanent cyclic order. 

are considered in this order, starting from a designated high-priority 

buffer. 

cycle becomes the high-priority buffer in the next cycle. 

scheme, a token in any buffer is considered to have a priority equal to 

In each clock cycle all the buffers 

The buffer adjacent to the high-priority one in the current 

In another 

56 



Fig .  5.2 A Buffered Delta Network 

the number of tokens in that buffer. 

measure, one is selected equiprobably. 

the performance of the random melection scheme is found to be similar t o  

the other tvo  schemes, and is the easiest one to implement. 

For tokens with tho same priority 

From the results shown i n  1281, 
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Fig 5 . 3 a  Crossbar 

I .. 

Switch with b u f f e r s  at the input links 

I 

Fig 5 . 3 b  Crossbar Switch with the b u f f e r s  inside the switch 
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5.3.6 Token Format 

As mentioned earlier, information is communicated between PES via 

tokens or packets. There are two types of tokens, the instruction token 

containing the required information for a node execution and the data 

token carring data required to enable the node. A 64-bit token size 

accomodates a 32-bit data or operation field and 32 bits for the control 

directives. The control portion of the token includes the following 

subfields : 

i) Check field : This determines whether it is an instruction 
tokem or a data token. 

ii) Module field : This identifies the block of code (procedure 
or loop) to which the token belongs. 

iii) Instruction number field : This identifies the instruction 
number within a specific block. 

iv) Processor field : This denotes the processor responsible 
for executing the code. 

v) Error check field : This contains information for checking 
Error detection and correction the validity of the token. 

(EDAC) codes like cyclic redundancy check (CRC) and Hamming 
codes can be used. 

vi) Data counter field : This is a part of the data token only. 
It indicates the number of operands required to enable a 
node. 

The remaining 32 bits of the token contains the data value or the 

instruction code, as the case may be. From the software point of view, a 

longer token is better since it can carry more information. On the other 

hand, a shorter token is better from the hardware point of view,because 

.it reduces the amount of hardware and network conn*.ctions. Hence, the 

size of the token should be chosen in an optimal manner. 
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5.3.7 Design of the Processing Element 

The processing element (PE) is designed to meet some specific 

Every token has a tag or control field, and the PE has the requirements. 

ability to decode the tag and route the token to the separate components 

of the PE. 

tokens. A Contents Associative Memory (CAM) is simulated using the 

hardware hashing technique. 

generated from the tag at a very high search speed. The PE provides 

circuitry for EDAC decoding and encoding, and has the ability to detect, 

isolate, and rectify faults. Most of the units are self-checking. 

A block diagram of the proposed PE design is shown in Fig.5.4. 

The PE provides local storage for instruction and data 

A hash table is accessed by the hash key 

It 

consists of an input queue, an EDAC decode unit, a wait-store-match 

unit, an execution unit, an output unit, and the overflow and intermedi- 

ate buffers. 

The input queue is a FIFO buffer, receiving tokens from other PES 

and sending them to the EDAC decode unit. It works as a rate balancing 

mechanism, attempting to even the rate of token production and consump- 

tion. Therefore,' it allows the wait-match-store unit and the execution 

unit to work concurrently. 

The EDAC decode unit checks the error code of the token. If a 

correctable fault is detected, it passes the rectified token to the 

wait-match-store unit. If the fault is not rectified, it informs the 

diagnostic unit. 

The wait-match-store unit consists of a code memory to store the 

instructions and an operand memory for data. 

the hashing mechanism generates a hash key to address the hash table, 

called the Operand Block Table (OBT). 

After a token is received, 

Each entry of the operand memory 
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consists of 34 bits, which includes a 2-bit Operand Enable Flag (OEF) 

and a 32-bit data value. The OEF shows the existence of the operand. 

It is set to 00 if no token has arrived. When a data token arrives, the 

OEF is set to 10 or 01, depending on whether it is the left or right 

operand (denoted by the data counter field), and the data is stored in 

the data area. 

After a token is received, the unit starts accessing both the 

operand and code memories simultaneously. 

the operand memory is not searched, and the executable packet is 

immediately generated. 

searched, and if the matched token is found, the executable packet is 

generated, and the OEF is set to 00. The executable packet is passed 

onto the execution unit. 

If the instruction is monadic, 

For a dyadic instruction the operand memory is 

The execution unit performs all arithmetic and logic instructions. 

Some commonly used instructions can be hardwired to enhance the speed of 

execution. The result tokens are forwarded t o  the output unit. 

The output unit generates the tag field of the result token. 

token is properly formatted and the EDAC code is embedded in it. 

it is possible to encounter delay while transmitting a token through the 

communication network, a buffer is also provided in the output unit. 

The 

Since 

The overflow memory is provided to augment the operand memory. An 

overflow occurs when all locations in the operand memory are occupied. 

Then the unmatched incoming token is stored in the overflow buffer, and 

indicator flags are set up to notify subsequent tokens. The intmnediate 

buffer stores the,matched tokens of an enabled instruction, so that the 

tokens can be retrieved when a fault is detected after execution. 
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The diagnostic unit periodically checks the major components of the 

PE. 

execution or when the tested unit is inactive to avoid any degradation 

of system performance. 

aborts the PE and informs the diagnostic processor, which in turn 

initializes the reassignment process. 

the output unit from transmitting a faulty token, and thus can localize 

the fault. 

These tests can be executed either in parallel with the normal 

Once a fault is detected, the diagnostic unit 

The diagnostic unit can prevent 

5.3.8 Fault Tolerance 

Fault tolerance is an important requirement of any multiprocessor 

architecture. In the proposed architecture both hardware and software 

fault tolerances are used to improve system reliability. The workhorse 

PES within a cluster are duplicated to provide hardware redundancy, and 

are built with extremely reliable components. 

is very nagged and reliable. 

within every PE with the help of self-checking circuitry and diagnostic 

units. 

The communication network 

Fine-grained fault tolerance is provided 

Software fault tolerance is provided by watchdog timers and EDAC 

codes. 

proper process functions. 

from the one it checks, and is set as soon as the process starts. 

process resets the timer after completing successful completion. 

timer is not reset, then a process failure is assumed. 

A watchdog timer is a simple and inexpensive way of monitoring 

A timer is maintained as a process separate 

The 

If the 
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Transmission faults are easily detected and corrected using various 

codes. A simple example is the single error correction and double error 

detection Hamming code. 

12-bit word like 

For a 8-bit data word the encoder generates a 

where H ' s  are the check bits and D's are the data bits. 

The following are called the syndrome equations : 

Si - Hi + D3 + D5 + D7 + Dg + D11 

S2 - H2 + D3 + Dg + D7 + D10 

S4 - H4 + D5 + D6 + D7 + D12 

- H8 + Dg + D10 + D11 + D12 
where '+' denotes an exclusive OR operation. While generating the code, 

the check bits are produced by setting the syndrome bits to zero. 

During the checking process, the syndrome bits are checked. 

the resulting syndrome bits is nonzero, then a detectable error has 

occurred. An error can be corrected provided only bit is erroneous. 

The binary number s8s,$s2s1 gives the position of the erroneous bit. 

example, if D12 is changed, then s8 and S4 are nonzero and sgs4S2s1 = 

1100 - 12 in decimal. 
data words. 

If any of 

For 

This code can be extended to accommodate longer 

5 . 3 . 9  Stacked Hybrid WSI Technology 

The entire architecture must be housed within a small package. Hence 

the dimensions, weight, and cost of the hardware are important consider- 

ations. Hybrid Wafer Scale Integration (WSI) is a possible solution. 

This technology involves scribing the wafer after fabrication. The 
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actual PES are then separated and remounted in preassigned positions 

onto a substrate of polyimide. The inter-processor links are fabricated 

by ion-implantation techniques. Hybrid WSI partially eliminates the two 

major problems of traditional WSI, viz., yield and power dissipation. 

Since each PE is scribed and then separated, partial testing may be 

performed prior to remounting. 

the polyimide substrate. 

Power is more easily dissipated through 

Multi-stack wafers can be used to house the two clusters and other 

The 3D Computer Studies Department at the Hughes Research units. 

Laboratories, Malibu, California has built an image processing cellular 

array of stacked CMOS wafers with feedthroughs and interconnects. 

significant advantage of such a scheme is the upgradeability of the 

architecture as additional features are accommodated by introducing more 

wafer stacks. 

A 
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Chapter 6 
CONCLUSIONS AND RECOMMENDATIONS 

The previous chapters have discussed the need, development, 

utilization, and validity of this research. Experimental results have 

been discussed in Chapter 4. 

some general conclusions and recommendations. 

The purpose of this chapter is to express 

6.1 CONCLUSIONS 

This research has proved that acceptable results can be obtained by 

using parallel processing in real-time systems. 

enhancement of avionics design and vehicle control is possible by 

computing the guidance commands in real-time, exploiting the parallelism 

inherent in the problem. 

It has shown that 

There are various ways of applying parallel processing techniques to 

meet the need of rapid and real-time computation. It is concluded that 

one of these approaches, outlined in this report, comprises the follow- 

ing two major phases : 

1.) The sequential algorithm is suitably restructured by remov- 
ing dependencies, identifying concurrent tasks, exploiting 
optimum parallelism, and optimally allocating the tasks to 
available resources. 

2.)  Appropriate hardware structures are designed to implement 
the parallel or modified algorithm. 

Together, the above two phases constitute an innovative, customized 

computer architecture for the algorithmic execution of a real-time 

system. The data-driven mode of computation is ideally suited for the 

real-time solution of control processing, avoiding the bottlenecks of 

von Neumann multiprocessing. 
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This research has also demonstrated the significance of the alloca- 

tion process in a parallel processing application. Optimal allocation 

can be achieved with the help of heuristic algorithms. 

6 . 2  RECOMMENDATIONS 

The scope of this research is not limited to the specific field of 

guidance and control. 

outlined in this report, to similar problem areas in other real-time 

sys tems . 

The authors recommend the use of the techniques, 

The significance of the allocation process has been demonstrated by 

The authors suggest the design of allocation algorithms this research. 

which are themselves suitable for parallel implementation, an example of 

which is the branch and bound technique, discussed in section 3 . 4 . 2 .  

The effect of using decoupling techniques to reduce dependencies 

between differential equations should be investigated. 

can be further improved by defining tasks with optimum granularity. 

can be achieved by striking a suitable balance between the execution and 

communication times. The authors also recommend further research in the 

design of hardware structures which are capable of executing specific 

algorithms and graphs. 

The performance 

This 
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DESCRIPTION 
Entry 
a--wn*n 

b-- 2-n 

INC i 
AT 

Q-a*a/r 
PlP 
PIC 
P2P 
P2c 
P3P 
P3c 
P4P 
P4c 
PSP 
PSC 
P6p 
P6c 
P7P 
P7c 
P8p 
P8c 
P9P 
PgC 
Plop 
PlOC 
PllP 
PllC 
P12P 
P12c 
P13p 
P13' 
P14p 
P14c 
TEMPlP=Q*P$P 
TEMPIC 
TEMP2P=Q*P7P 
TEMP2C 
TEMP3p-Q*P9p 
TEMP3C 
flP0- P4P*TEMPlP 
flC 
f 2PoPlP- P7P*TEMPl 
f 2c 
TEMP4P-a*P4P+P2P 

NO. TIME 
1 0  
2 30 

3 50 

4 20 
5 20 

6 60 
7 110 
8 110 
9 110 
10 110 
11 110 
12 110 
13 110 
14 110 
15 110 
16 110 
17 110 
18 110 
19 110 
20 110 
21 110 
22 110 
23 110 
24 110 
25 110 
26 110 
27 110 
28 110 
29 110 
30 110 
31 110 
32 110 
33 110 
34 110 
35 30 
36 30 
37 30 
38 30 
39 30 
40 30 
41 30 
42 30 
43 50 
44 50 
45 50 

Appendix A 
TASK LIST 

PREDECESSORS 
None 
1 

1 

1 
1 

2 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
6,13' 
6,14 
6,19 
6,20 
6,23 
6,24 
13,35 
14,36 
7,19,35 

2,9,13 
a, 20,36 
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SUCCESSORS 
2,3,4,5 
6,45,46,57,58,69,70 
77,78,95,96,105,106 
49,50,63,64,75,76,81, 
82,101,102 
7,8, ... 108,109 
87,88,91,92,97,98, 
103,104 
35,36,37,38,39,40,83,84 
43 
44 
45,55,87 
46,56,88 
49,61 
50,62 
35,41,45,49,67 
36,42,46,50,68 
61,91 
62,92 
67,69,97 
68,70,98 
37,43,53,57,63,77,103 
38,44,54,58,64,78,104 
75 
76 
39,47,59,69,71,75,79,81 
40,48,60,70,72,76,80,82 
51,65,77,81,83,105 
52,66,78,82,84,106 
91 
92 
95 
96 
101 
102 
89,93,95,99,101,107 
90,94,96,100,102,108 
41,43,47,51,89,93 
42,44,48,52,90,94 
53,59,65 
54,60,66 
71,79 , 99 
72,80,100 
109 
119 
109 
109 
47 



TEMP4C 46 
f3P=TEMPlP*P9P + 47 

TEMP4P 
f3= 48 
TEMPSP-P3P+P4P*b 49 
TEMPSC 50 
f4p-TEMPlP*PlOp + 51 

f4C 52 
TEMP6P=TEMP2P*P7P 53 
TEMP6C 54 

f5C 56 
TEMP7P=a*P7P 57 
TEMP7C 58 
TEMP8P-TEMP2P*P9P 59 
TEMPSC 60 
f 6p-P3p+P5p+TEMP7p 61 

f6= 62 
TEM.P9P=b*P7P 63 
TEMPgC 64 
TEMPlOP-TEMP2P*PlOP 65 
TEMPIOC 66 
f7p-P6p+P4p+TEMP9p 67 

f7C 68 
TEMPllP-P6P+a*P9P 69 
TEMPllC 70 
TEMP12P=TEMP3P*P9P 71 
TEMP12C 72 
f 8P-2*TEMPllP 73 

fSC 74 
TEMP13P-P8P+b*P9P 75 
TEMP13C 76 
TEMP14P-P7P+a*PlOP 77 
TEMP14C 78 
f9P=TEMP13P+TEMP14P 79 

fgC 80 
TEMPlSP-P9P+b*PlOP 81 
TEMPISC 82 
TEMP16P=Q*PlOP 83 
TEMP16C 84 

TEMPSP 

f5P-2*P2P-TEMP6P 55 

- TEMP8P 

-TEMPlOP 

-TEKP12P 

-TEMP3P*P9P 

f lOP-2*TEMPlSp as 
-TEMP16P 

f lo= 86 
TEMP17P-P2*AT 87 
TEMP17C 88 
fllP-TEMP17P- 89 

fllC 90 
TEMPlP*P4P 

TEMP18P-P11P-P5P*AT 91 

50 
50 

50 
50 
50 
50 

50 
30 
30 
40 
40 
30 
30 
30 
30 
60 

60 
30 
30 
30 
30 
60 

60 
50 
50 
30 
30 
40 

40 
50 
50 
50 
50 
70 

70 
50 
50 
30 
30 
40 

40 
30 
30 
50 

50 
50 

2,10,14 
23,35,45 

24,36,46 
3,11,13 
3,12,14 
25,35,49 

26,36,50 
19,37 
20.38 
9,53 
10,54 
2,19 
2,20 
23.37 
24,38 
11,15,57,59 

12,16,58,60 
3,19 
3,20 
25,37 
26,38 
13,17,63,65 

14,18,64,66 
2,17,23 
2,18,24 
23,39 
24,40 
69,71 

70,72 
3,21,23 
3,22,24 
2,19,25 
2,20,26 
23,39,75,77 

24,40,76,78 
3,23,25 
3,24,26 
6,25 
6,26 
81,83 

82,84 
5,9 
5,lO 
33,35,87 

34,36,88 
5,15,27 

71 

48 
109 

109 
51 
52 
109 

109 
55 
56 
109 
109 
61 
62 
61 
62 
109 

109 
67 
68 
67 
68 
109 

109 
73 
74 
73 
74 
109 

109 
79 
80 
79 
80 
109 

109 
85 
86 
85 
86 
109 

109 
89 
90 
109 

109 
93 



TEMP18= 92 50 
f 12P-TEMP18P - 93 50 

f12C 94 50 
TEMP19P-P12P+a*P14P 95 50 
TEMP1gC 96 50 
TW20P-P6P*AT 97 30 
TEMP20C 98 30 
f 1 3P-TEMp19P - 99 70 
TEMP20P-TEMP3P*P4P 
f13C 100 70 
TEMP21P-P13P+b*P14P 101 50 
TEMP21C 102 50 
TEMP22P-P7P*AT 103 30 
TEK?22C 104 30 
TEMP23P+PlOP 105 30 
TEMP23C 106 30 

TEMPlP*P14P 

f14P--TEMP23P*P14P 107 70 
+TEMP21P -TEMP22P 

f 14c 108 70 
CMP 109 50 

EXIT 110 0 

5,16,28 94 
33,35,91 109 

34,36,92 109 
2,29,33 99 
2,30,34 100 
5,17 99 
5,18 100 
33,39,95,97 109 

34,40,96,98 109 
3,31,33 107 
3,32,34 108 
5,19 107 

2,25 107 

33,101,103,105 109 

5,20 108 

2.26 108 

34,102,104,106 109 

52,55,56,61,62,67, 
68,73,74,79,80,85, 
86,89,90,93,94,99, 
100,107,108 
109 NONE 

41 ... w,47,48,5i, 110 
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Appendix B 
TASK GRAPH PROGRAM 

( Author : Arindam Saha All Rights Reserved by author 1 
( Program explained in Section 3.2 also. 1 
( Extensive documentation is provided with the program. 1 
( This program maps any given task graph onto a group of processors. ) 
( It requires the vertices and the edges of the task graph as its 1 
( input and provides the schedule ,i.e., which task is to be executed ) 
( by which processor and at what time. The number of processors is a ) 
( variable. The program implements the CP/MISF (explained in chapter ) 
( three) algorithm. 1 

program cpmisf(input,output); 

type 
proc - record 

end: 

tas - record 
busy : boolean; ( Each processor is either busy or free ) 

( This is the task definition ) 

enabled : boolean; 

assigned : boolean; 

time : integer; ( Execution time of the task 
resource : integer; ( The processor number to which it is assigned ) 
starttime : integer; ( Time instant at which it starts execution ) 

( Task is enabled when all its predecessors ) 
( have been executed 
( Task is assigned to an available processor ) 

executed : boolean; ( Task has finished execution or not 1 

end; 
matrlx=array[l..110,1..110] of boolean; 

var 
a,newa : matrix; 
pr,prl : array[l..llO] of real; { priority lists ) 
time,imsucc,newtime : array [1..110] of integer; 
i,j,k,l,v,t,p,serialtime : integer; 
filvar,filvarl : text; ( input and output data files ) 
task : array[l..llO] of tas; 
processor :array[l..35] of proc; 
over : boolean; 
speedup,eff : real; ( performance indices ) 

( a : adjacency'matrix newa : modified a after renumber ) 

( This procedure reads the input data and initializes all the variables 

procedure initialize; 
var 
x,y,e,vl,v2 : integer; 

begin 
readln(filvar1,v.e); 
for x:-1 to v do 
for y:-1 to v do a[x,y]:-false; 
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for j :-I to e do begin 
readln(filvarl,vl,v2); 
a[vl,v2]:-true; 
end; (for) 

for 1:-7 to 109 do a[4,i]:-true; ( This is for the particular graph. 
for j:-1 to v do begin 

end; (for) 
end;(initialize) 

raadln(filvarl,time[j],~ucc[j]); 

( This procedure calculates the level (defined in chapter 3) of each task. 

procedure level; 
var 
b : array[1..110,1..110] of integer; 
temp,temp4 : real; 

for 1:-1 to v do 
for j:-1 to v do 

bagin 

i f  a[i,j] then b[j,i]:-O else b[j,i]:--maxint; 

pr[v]:-time[v]; prl[v]:-time[v]; 
for i:-1 to (v-1) do begin 
temp:-0.; k:-v-i;temp4:-0.; 
for j:-k to (v-1) do begin 
prl[k]:-prl[j+l] + b[j+l,k] + time[k]; ( prl is used to calculate the 

pr[k]:-pr[j+l] + b[j+l,k] + time[k] + imsucc[k]/v; ( The last factor 
( considers the effect due to the number of successors 
if pr[k]>temp then temp:-pr[k]; 
if prl[k]>temp4 then temp4:-prl[k]; 
end; (for j ) 

( critical time of the graph. 

pr [ k] :-temp ; prl [ k] :-temp4 ; 
end;(for i) 

end;(level) 

{ This procedure renumbers the tasks according to their priorities, with 
( task one having the highest priority. 

procedure renumber; 
var 
max : real; 
newno : array[l..llO] of integer; 

begin 
for k*-1 to v do begin 
ma:-pr[l] ; j :-1; 

for 1:-2 to v do begin 
if pr [ i]>max then begin 
ma:-pr[i]; 
j :mi; 
end; ( if) 
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end;(for i) 

newtime[k]:-time[j];pr[jJ:--1.; 
newno[j J :-k; 

end;{for k) 
( for i:-1 to v do writeln(filvar,'New number[',i,'] - ',newno[i]);) 

1 ( Modifying the adjacency matrix according to the new numbers 
for i:-1 to v do 

for 1:-1 to v do 
for j:-1 to v do newa[i,j J :-false; 

for j:-1 to v do if a[i,j] then newa[newno[i],newno[jJ]:-true; 
end;(renumber) 

. { This procedure updates the adjacency matrix when task z has finished ) 
( execution. 1 

procedure update(z : integer); 

var 
m,n : integer; 

begin 
for m:-1 to v do 
if newa[z,m] then begin 
newa[z,m]:-false; 
task[m].enabled:-true; 
for n:-1 to v do if newa[n,m] then task[m].enabled:-false; 

end; (then) 
end; {update) 

(main program) 

begin 
assign(filvarl,'a:inputl.dat'); 
assign(filvar,'a:output3O.dat~); 
reset(filvar1); 
rewrite(fi1var); 
writeln('Enter the order of the graph and the no. of processors'); 
readln(v,p); 
initialize; 
level; 
renumber; 

for i:-1 to p do processor[i].busy:-false;( all processors are initialized ) 

for i:-1 to v do begin 
( Tasks are initialized ) 

task[i].assigned:-false; 
task[i].enabled:-false; 
task[i].executed:-false; 
task[i].time:-newtime[i]; 

end; (for i) 

task[l].executed:-true ; task[v].executed:=tre ; 
update(1); ( Task one is the entry node ) 
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t:-O; 
( Initial tasks are asigned ) 
for j:-1 to p do 

not(processor[j].busy)) then begin 
for i:-1 to v do if (task[i].enabled and not(task[i].assigned) and 

task[i].resource:-j; 
task[i].starttime:-t; 
task[i].assigned:-true; 
processor[j].busy:-true; 
end; (then) 

t:-1; 

repeat 

for i:-1 to v do if (task[i].assigned and not(task[i].executed)) then begin 
task[i].tinre:- task[i].time - 1; ( finished one unit of time ) 
if task[i].time-0 then begin 
task[i].exscuted:-true; ( task i has finished execution ) 
update( i) ; 
processor[task[i].resource].busy:-false; ( processor becomes free 1 

end; (for i) 
end; (time:-O) 

( If any processor is free then we check all the enabled but not assigned ) 

for j:-1 to p do if not(processor[j].busy) then 
{ tasks which can now be assigned. 1 

for i:-1 to v do if (task[i].enabled and not(task[i].assigned) and 
not(processor[j] .busy)) then begin 
task[i].resource:-j; 
task[i].assigned:-true; 
task[i].starttime:-t; 
processor[j].busy:-true; 
end; (for i then) 

over:-true; 
for i:-1 to v do if not(task[i].executed) then over:-false; 

until (over) ; ( until all tasks have been executed ) 
t:-t + 1; 

{ Outputting data ) 
writeln(filvar,'Critical time for this graph is - .'Dprl[l]); 
writeln(filvar,'Total time taken - ',(t-l)D' units'); 
writeln(filvar,'Task Starttime Resource'); 
for 1:-2 to v-1 do begin 
write(filvar,' ',i,' ',task[i].starttime,' 

writeln(fi1var); 
e) ; 

end; (for) 

',task[i].resourc 

{ Calculating the performance indices 1 
seria1time:d; 
for i:-1 to v do serialtime:-serialtime + time[€]; 
speedup:-serialtime/(t-1); 
eff:-speedup/p; 
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writeln(filvar,'With ',p,' processors Speedup-',speedup,'; Efficiency-',eff); 
close(fi1var); 
close(filvar1); 
end. 
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